Spontaneous and stimulated emission from atoms prepared in the super-radiant state

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 10 L159
(http://iopscience.iop.org/0305-4470/10/9/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:06

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Spontaneous and stimulated emission from atoms prepared in the super-radiant state

Miguel Orszag
Physics Department, Ryerson Polytechnical Institute, Toronto, Canada

Received 17 June 1977

Abstract

Spontaneous and stimulated emission from atoms prepared in the super-radiant state are studied, in the non-resonant case. An exact equation of motion for R_{3} and approximate solutions are obtained.

Super-radiant emission for two-level atoms in the resonant case has been studied by various authors, in the past, at various approximations (Bonifacio and Preparata 1970, Bonifacio et al 1971, Glauber and Haake 1976).

In this letter, we make use of the basic non-resonant model for super-radiance to derive the equation of motion for R_{3}, calculate $\left\langle R_{3}\right\rangle(t)$ and $\bar{n}(t)$ in the cases of spontaneous and stimulated emission and determine the photon statistics for short times ($\tau \ll r^{-1 / 2}$).

The basic Hamiltonian is:

$$
\begin{equation*}
H=\hbar \omega a^{\dagger} a+\hbar \omega_{0} R_{3}+\hbar K\left(a R^{+}+a^{\dagger} R^{-}\right) \tag{1}
\end{equation*}
$$

Using Heisenberg's equation of motion for R_{3}, we write:

$$
\begin{equation*}
\dot{R}_{3}=-\frac{\mathrm{i}}{\hbar}\left[R_{3}, H\right]=(\mathrm{i} K)\left(a^{\dagger} R^{-}-a R^{+}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{R}_{3}=-\frac{\mathrm{i}}{\hbar}\left[\dot{R}_{3}, H\right] . \tag{3}
\end{equation*}
$$

After some straightforward algebra, one gets:

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}+\hat{\Omega}^{2}\right) R_{3}+2 K^{2}\left(R^{2}-3 R_{3}^{2}\right)=\Delta\left(\omega^{\mathrm{RWA}}-\omega \hat{N}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\omega_{0}-\omega, \quad \hat{\Omega}^{2}=\left(2 K^{2}\right)(2 \hat{N}+1)+\Delta^{2}, \quad \hat{N}=a^{\dagger} a+R_{3}, \tag{5}
\end{equation*}
$$

$\omega^{\mathrm{RWA}}=H / \hbar$ (the Hamiltonian in the rotating wave approximation). Scaling the time $\tau=K t$, equation (4) can be written as:

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} \tau^{2}}+\hat{\Omega}_{1}^{2}\right) R_{3}-6 R_{3}^{2}=\Delta_{1}\left(\omega_{1}^{\mathrm{RWA}}-\omega_{1} \hat{N}\right)-2 R^{2}, \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta_{1}=\Delta / K, \quad \hat{\Omega}_{1}^{2}=2(2 \hat{N}+1)+(\Delta / K)^{2}, \\
& \omega_{1}^{\mathrm{RWA}}=\omega^{\mathrm{RWA}} / K, \quad \omega_{1}=\omega / K . \tag{7}
\end{align*}
$$

Equation (6) has been solved exactly for one atom (see, for example Allen and Eberly 1975 or Jaynes and Cummings 1963). In this equation all operators involved besides \boldsymbol{R}_{3} are constants of motion. Specifically, $\hat{\Omega}_{1}^{2}$ and the whole second member are constants.

An approximate solution can be obtained by assuming:

$$
\begin{equation*}
\left\langle R_{3}^{2}\right\rangle=\left\langle R_{3}\right\rangle^{2} \tag{8}
\end{equation*}
$$

which amounts to neglecting the fluctuations of R_{3}. In the super-radiant case this should be a good approximation, since fluctuations occur around $m \sim 0$.

The initial state of the system is specified by:

$$
|r, m=0, n(0), t=0\rangle .
$$

Using the condition (8), equation (6) becomes a c-number differential equation. Define

$$
y(\tau)=\left\langle R_{\substack{3 \\ n(0)}}\right\rangle_{m=0}(\tau)
$$

then

$$
\begin{equation*}
\ddot{y}+\left(\left\langle\hat{\Omega}_{1}^{2}\right\rangle_{\substack{m=0 \\ n(0)}}\right) y-6 y^{2}=\left\langle\Delta_{1}\left(\omega_{1}^{\mathrm{RWA}}-\omega_{1} \hat{N}\right)-2 R_{\substack{2 \\ n(0)}}\right. \tag{9}
\end{equation*}
$$

where $\left\langle\hat{\Omega}_{1}^{2}\right\rangle_{m=0 . n(0)}$ and $\left\langle\Delta_{1}\left(\omega_{1}^{\mathrm{RWA}}-\omega_{1} \hat{N}\right)\right\rangle_{m=0 . n(0)}$ can be easily computed, since they are expectation values of conserved operators:

$$
\begin{align*}
& \left\langle\hat{\Omega}_{1}^{2}\right\rangle_{m=0}^{n(0)} \\
& \left\langle\Delta_{1}\left(\omega_{1}^{\mathrm{RWA}}-\omega_{1} \hat{N}\right)-2 R^{2}\right\rangle_{\substack{m=0 \\
n(0)}}=-2 r(0)+2+\Delta_{1}^{2}, \tag{10}
\end{align*}
$$

Making use of equation (10), equation (9) becomes

$$
\begin{equation*}
\ddot{y}+y\left(4 n(0)+2+\Delta_{1}^{2}\right)-6 y^{2}=-2 r(r+1) \tag{11}
\end{equation*}
$$

Multiplying equation (11) by \dot{y} and integrating, choosing zero for the integration constant, one gets

$$
\begin{equation*}
(\dot{y})^{2}=4 y\left(y-y_{1}\right)\left(y-y_{2}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{1,2}=\left(4 n(0)+2+\Delta_{1}^{2}\right) / 8 \pm\left[\left(4 n(0)+2+\Delta_{1}^{2}\right)^{2} / 64+r(r+1)\right]^{1 / 2} . \tag{13}
\end{equation*}
$$

The solution of equation (12) can be readily expressed in terms of elliptic functions:

$$
\begin{equation*}
y(\tau)=\left\langle R_{3}\right\rangle_{m=0}^{m(0)}, ~(\tau)=\frac{y_{1} y_{2}}{y_{1}-y_{2}} s d^{2}(u, m) \tag{14}
\end{equation*}
$$

where:

$$
\begin{equation*}
u=\tau\left(y_{1}-y_{2}\right)^{1 / 2}, \quad m=-\frac{y_{2}}{y_{1}-y_{2}}>0 \tag{15}
\end{equation*}
$$

For short times, $s d(u, m) \approx u$, and we get:

$$
\begin{equation*}
\left\langle R_{3}\right\rangle_{m=0}^{m(0)} \backslash(\tau)=\left(\frac{y_{1} y_{2}}{y_{1}-y_{2}}\right) u^{2}=-r(r+1) \tau^{2} \tag{16}
\end{equation*}
$$

which is essentially Dicke's result (Dicke 1954).
To compute $\bar{n}(\tau)$, we observe that

$$
\tilde{n}(\tau)+\left\langle R_{3}\right\rangle(\tau)=\text { constant }=\tilde{n}(0)
$$

so that

$$
\begin{equation*}
\bar{n}(\tau)=\bar{n}(0)-\frac{y_{1} y_{2}}{y_{1}-y_{2}} s d^{2}(u, m) \tag{17}
\end{equation*}
$$

or, in a final form
$\bar{n}(\tau)=\bar{n}(0)+\left[r(r+1) s d^{2}(u, m)\right] / 2\left[\left(4 n(0)+2+\Delta_{1}^{2}\right)^{2} / 64+r(r+1)\right]^{1 / 2}$.
In the special case $\Delta_{1}=0$ (resonance), $n(0)=0$ (spontaneous emission) and $r \gg 1$, equation (18) becomes:

$$
\begin{equation*}
\bar{n}(\tau)=\frac{1}{2} r s d^{2}(u, m), \quad \text { with } u \approx \tau(2 r+1)^{1 / 2} \quad \text { and } m \sim \frac{1}{2} . \tag{19}
\end{equation*}
$$

These results agree with Bonifacio and Preparata (1970).
Finally, to study the photon statistics in the spontaneous emission case, consider the probability amplitude for n photons at time τ (scaled time), given by

$$
\begin{equation*}
p(n, \tau)=\langle m=-n|\langle n| \exp (-\mathrm{i} H \tau / \hbar K)|0\rangle|m=0\rangle . \tag{20}
\end{equation*}
$$

Differentiating both sides of equation (8) with respect to τ we get:

$$
\begin{equation*}
\mathrm{i} \dot{p}(n, \tau)=\langle m=-n|\langle n|\left[\omega_{1} \hat{N}+\Delta_{1} R_{3}+\left(a^{\dagger} R^{-}+a R^{+}\right)\right] \exp (-\mathrm{i} H \tau / \hbar K)|0\rangle|0\rangle . \tag{21}
\end{equation*}
$$

By using the well known properties of R_{3}, R^{+}, R^{-}, equation (21) becomes:

$$
\begin{gather*}
\mathrm{i} \dot{p}(n, \tau)=[n(r-n+1)(r+n)]^{1 / 2} p(n-1, \tau)-n \Delta_{1} p(n, \tau) \\
+[(n+1)(r+n+1)(r-n)]^{1 / 2} p(n+1, \tau) \tag{22}
\end{gather*}
$$

Equation (22) cannot be solved exactly, but we can solve it in the short-time limit, if we make the following assumption:

$$
n \ll r \quad \text { or } \quad \tau \ll r^{-1 / 2}
$$

In this case, the equation (22) becomes

$$
\begin{equation*}
\mathrm{i} \dot{p}(n, \tau) \approx r n^{1 / 2} p(n-1, \tau)+r(n+1)^{1 / 2} p(n+1, \tau)-n \Delta_{1} p(n, \tau) . \tag{23}
\end{equation*}
$$

Equation (23) can be solved exactly; the solution for the n-photon probability amplitude is:

$$
\begin{equation*}
p(n, \tau)=(-1)^{n} \frac{(r \tau)^{n}}{(n!)^{1 / 2}} \exp \left[-\frac{r^{2}}{2}\left(\tau-\frac{\mathrm{i} \Delta_{1}}{r^{2}}\right)^{2}\right] \exp \left[\mathrm{i}(n-1) \Delta_{1} \tau\right] \tag{24}
\end{equation*}
$$

Therefore, the n-photon probability turns out to be

$$
\begin{equation*}
|p(n, \tau)|^{2}=\frac{\left(r^{2} \tau^{2}\right)^{n}}{n!} \exp \left(-r^{2} \tau^{2}\right) \exp \left[\left(\omega_{0}-\omega\right)^{2} / 2 K^{2} r^{2}\right] \tag{25}
\end{equation*}
$$

If we take a large number of atoms, consistent with our earlier assumption, then equation (25) is a Poisson distribution, the same as in the resonant case (Bonifacio and Preparata 1970) with $\bar{n}=r^{2} \tau^{2}$.

References

Allen L and Eberly J H 1975 Optical Resonance and Two-Level Atoms (New York: Wiley)
Bonifacio R and Preparata G 1970 Phys. Rev. A 2336
Bonifacio R, Schwendimann P and Haake F 1971 Phys. Rev. A 4854
Dicke R H 1954 Phys. Rev. 9399
Glauber R J and Haake F 1976 Phys. Rev. A 13357
Jaynes E T and Cummings F W 1963 Proc. IEEE 5189

