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Spontaneous and stimulated emission from atoms prepared in 
the super-radiant state 

Miguel Orszag 
Physics Department, Ryerson Polytechnical Institute, Toronto, Canada 

Received 17 June 1977 

Abstract. Spontaneous and stimulated emission from atoms prepared in the super-radiant 
state are studied, in the non-resonant case. An exact equation of motion for R3 and 
approximate solutions are obtained. 

Super-radiant emission for two-level atoms in the resonant case has been studied by 
various authors, in the past, at various approximations (Bonifacio and Preparata 1970, 
Bonifacio et a1 1971, Glauber and Haake 1976). 

In this letter, we make use of the basic non-resonant model for super-radiance to 
derive the equation of motion for R3, calculate (R3)( t )  and A ( t )  in the cases of 
spontaneous and stimulated emission and determine the photon statistics for short 
times (7 << r-”’). 

The basic Hamiltonian is: 

H =  hwata +hwQR3+hK(aR++atR-) .  ( 1  1 
Using Heisenberg’s equation of motion for R3, we write: 

(2  ) 
1 

R3 = --[R3, HI = ( iK) (a tR- -aRf ) ,  h 

and 

1 
(3 1 R -  3 - - p 3 ,  HI. 

After some straightforward algebra, one gets: 

(-$+A2) R3+2KZ(R2-3R:)  = A(w RWA - U&), (4) 

where 

A = w ~ - w ,  h2 = (2KZ)(2fi+ 1 ) +  A’, f i = a t a + R 3 ,  ( 5 )  

- H / h  (the Hamiltonian in the rotating wave approximation). Scaling the time RWA - w 
7 = K f ,  equation (4) can be written as: 

(-$ + h:) R3 - 6 R  J’ = A1 (w yWA - U,&) - 2R ’, (6)  

L159 



L160 Letter to the Editor 

where 

A I  = A/K, h: = 2(2fi+ 1)+(A/K)2, 

w1 RWA = w R W A / K ,  w/K. 

Equation (6) has been solved exactly for one atom (see, for example Allen and Eberly 
1975 or Jaynes and Cummings 1963). In this equation all operators involved besides 
R 3  are constants of motion. Specifically, h: and the whole second member are 
constants. 

An approximate solution can be obtained by assuming: 

(R:) = (R3>2, (8) 
which amounts to neglecting the fluctuations of R3. In the super-radiant case this should 
be a good approximation, since fluctuations occur around m - 0. 

The initial state of the system is specified by: 

( r ,  m = 0, n(O), t = 0). 

Using the condition (8), equation (6) becomes a c-number differential equation. 
Define 

Y(T)' (R3)m=O(T), 
n(O) 

then 

(9) RWA - j ;  + ((SZf)m=,)y - 6y2=(Ai (wt  o1fi)-2R2)m=0 
n (0) n(O) 

RWA - where (h:)m=o,n(o) and (Al(w 
expectation values of conserved operators: 

olfi)),,,=O,n(0)can be easily computed, since they are 

Making use of equation (lo), equation (9) becomes 

j ;  + y(4n(0)+ 2+A:)-6y2 = -2r(r + 1). (11) 
Multiplying equation (11) by y and integrating, choosing zero for the integration 
constant, one gets 

(YI2 = 4 Y ( Y  - Y l X Y  - Y2), 

y1,2 = (4n(0)+ 2 + A:)/8 * [(4n(0)+ 2 + A:)2/64 + r ( r  + 1)]1'2. 

(12) 

(13) 

where 

The solution of equation (12) can be readily expressed in terms of elliptic functions: 

where: 
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For short times, sd(u, m)= U, and we get: 

which is essentially Dicke's result (Dicke 1954). 
To compute A ( T ) ,  we observe that 

A(T)+ (R3)(7) = constant = A(O),. 

so that 
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(16) 

or, in a final form 

A ( T ) =  A ( O ) + [ r ( r +  l )sd2(u,  m)] /2[(4n(0)+2+-A:)2/64+r(r  + l)]"'. (18) 

In the special case AI = 0 (resonance), n (0) = 0 (spontaneous emission) and r >> 1, 
equation (18) becomes: 

A ( T )  = 4rsd2(u, m) ,  with U = 7(2r + 1)"' and m - 4. (19) 
These results agree with Bonifacio and Preparata (1970). 

probability amplitude for n photons at time T (scaled time), given by 
Finally, to study the photon statistics in the spontaneous emission case, consider the 

p ( n ,  7) = (m = -n I(n lexp(-iHT/AK)IO)Jm = 0). 

ip (n, T) = (m = -n I( n I[ w l f i  + AI R3 + (a  ' R  - + aR')] exp(-iHT/hK)IO)IO). 

(20) 

Differentiating both sides of equation (8) with respect to T we get: 

(21) 

By using the well known properties of R3, R + ,  R - ,  equation (21) becomes: 

id(n, T ) =  [ n ( r - n + l ) ( r + n ) ] 1 / 2 p ( n - 1 ,  7)-nAlp(n, T) 

+ [(n + ~ ) ( r  + n + l ) ( r  - n )]'"p(n + 1 , ~ ) .  (22) 
Equation (22) cannot be solved exactly, but we can solve it in the short-time limit, if 

we make the following assumption: 

n << r or T<< r-'". 

In this case, the equation (22) becomes 

i@(n, ~ ) = r n ' " p ( n  - 1, T ) + r ( n  +l)'/'p(n + 1, 7 ) - n A l p ( n ,  T). (23) 

Equation (23) can be solved exactly; the solution for the n -photon probability 
amplitude is: 

Therefore, the n-photon probability turns out to be 
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If we take a large number of atoms, consistent with our earlier assumption, then 
equation (25) is a Poisson distribution, the same as in the resonant case (Bonifacio and 
Preparata 1970) with A = r 2 T 2 .  
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